A Biocompatible Near-Infrared 3D Tracking System
نویسندگان
چکیده
منابع مشابه
A Biocompatible Near-Infrared 3D Tracking System*
A fundamental challenge in soft-tissue surgery is that target tissue moves and deforms, becomes occluded by blood or other tissue, and is difficult to differentiate from surrounding tissue. We developed small biocompatible near-infrared fluorescent (NIRF) markers with a novel fused plenoptic and NIR camera tracking system, enabling three-dimensional tracking of tools and target tissue while ove...
متن کامل3D near-infrared imaging based on a SPAD image sensor
A new imager for 3D near-infrared imaging has been designed based on a single-photon avalanche diode (SPAD) imager with 128x128 pixels capable of performing time-resolved measurements with a resolution of 97ps. The imager linearity has been improved to make more accurate measurements. A new optical setup has been implemented in order to prove the suitability of this kind of sensors for this app...
متن کاملDesigning a predictive guidance and control system for maneuverable ground moving target tracking in 3D space using a Hexarotor
In this paper, the continuity of tracking a ground moving target using a Hexarotor is considered in the presence of sudden changes in direction, deceptive movements, temporary departure from the field of view (FOV) and changes in the height of the target. In this regard, a hierarchical guidance and control system for target tracking problem in an unknown environment and disturbances is proposed...
متن کاملbrain near-infrared spectroscopy (nirs)
near-infrared spectroscopy (nirs) is a spectroscopic method that uses the near-infrared region of the electromagnetic spectrum. typical applications include medical and physiological diagnostics. nirs can be used for non-invasive assessment of brain function through the intact skull in human subjects by detecting changes in blood hemoglobin concentrations associated with neural activity, e.g., ...
متن کاملInfrared Tracking System for Immersive Virtual Environments
In this paper, we describe the theoretical foundations and engineering approach of an infrared-optical tracking system specially design for large scale immersive virtual environments (VE) or augmented reality (AR) settings. The system described is capable of tracking independent retro-reflective markers arranged in a 3D structure (artefact) in real time (25Hz), recovering all possible 6 Degrees...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Transactions on Biomedical Engineering
سال: 2017
ISSN: 0018-9294,1558-2531
DOI: 10.1109/tbme.2017.2656803